Developing Photonics Education in Iowa’s Rural High Schools (DPE)
(Developing __________ Education in __________’s Rural High Schools)
Project Y2, Q3
HI-TEC 2020 Transformed

Frank Reed, MBA AAS Lasers/Optics
Director/P.I./Trainer/Outreach
Indian Hills Community College
Ottumwa, IA
frank.reed@indianhills.edu

Please feel free to send questions or comments.

"This material is based upon work supported by the National Science Foundation under Grant No. 1800935."
"Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."
Pathway to Careers
• Population of IA: 3.1 million in 99 counties; ~31.3k per county
 • IHCC’s 10 - county area: 137,900; ~13.9k per county; 44% of state average.
 • Currently 4 – high schools have 17 students attending LEO 103 out of 1170.
 • School year 2020 – 2021: increase recruiting outreach area.

• IHCC understands the national demand for Laser & Optics (photonics) technicians and seeks to increase the supply across the U.S.

• IHCC’s Lasers & Optics Technology program began in 1985.
 • First graduating class was May 1987; Average 20 graduates per year
 • Graduates employed by 140 companies, in 42 states & 2 European countries
 • 8 – 10 job opportunities per graduate; 4 - 5 job offers; averaging $57.5k
 • Less than 1% of these grads employed in Iowa. We inform them they will move.
Developing Photonics Education in Iowa’s Rural High Schools

• 2014: The Midwest Photonics Education Center (MPEC) was established as a NSF ATE center (2014 – 2018) at Indian Hills Community College (IHCC) in its Advanced Technology Center, Ottumwa, IA.
 • MPEC: Worked with a network of educational institutions and business partners in states throughout the Midwest and across the nation to lead an effort to increase the number of trained photonics technicians.
 • MISSION: To introduce university, community college, high school and middle school teachers to lasers & optics (photonics).
 • MPEC ended 8/2019 after a one year extension; its influence has not.
Developing Photonics Education in Iowa’s Rural High Schools

• 2018: The NSF ATE project grant, Developing Photonics Education in Iowa’s Rural High Schools (RIPE), was awarded to IHCC (2018 – 2021).
 • A three-year mission to bring educational programming in the high-growth, high-demand field of photonics to a population rarely afforded such opportunities: rural Iowa high school students and teachers.
• Our primary goal is to increase the number of rural Iowa high school students in the photonics technician pipeline.
 • Leverage MPEC’s associations with industry partners to enhance the project’s activities.
 • Develop new relationships with rural Iowa secondary schools and homeschool groups to build sustainability.

To date
This goal will be met through three objectives:

1. Offer an engaging, dual credit photonics course to rural Iowa high school students via a hybrid online learning platform.

2. Provide photonics-related professional development and follow-up assistance to science and technology teachers to have photonics concepts infused into their courses.

3. Host a photonics summer institute to provide high school students & teachers with more in-depth exposure to the field.
1. Offer an engaging, *dual credit photonics course* to rural Iowa high school students via a *hybrid online* learning platform

- High School Photonics Fundamentals courses (2)
 - Two, eighteen week high school semesters.
 - Together they transfer as the IHCC Photonics Fundamentals course (1)
- Each course consist of three learning units (LU) which include
 - *Online* “lecture” content (syllabus & course schedule) for
 - LU reading assignments (texts supplied by IHCC)
 - LU slide presentations with audio & transcript
 - LU Study Guide which is submitted/graded
Developing Photonics Education in Iowa’s Rural High Schools
Each course consists of three (3) learning units which include:

- LU Lasers & Optics Labs: 15 total: 2/LU - Course 1 (6); 3/LU - Course 2 (9)
 - *Hands-on* labs (IHCC supplies the kits)
 - These Kits have the necessary components and equipment to set-up and complete 30 photonics labs
 - Lab Instruction Booklet included with purchase of Photonics Kit
- Instructions for each lab are contained in the course learning unit
 - 2 – videos are supplied to assist in lab completion.
- Lab Write-Up is submitted & graded
- LU Test
 - Students may use the presentation, study guide, text and lab results
 - Each LU test has a time limit.
Developing Photonics Education in Iowa’s Rural High Schools
Developing Photonics Education in Iowa’s Rural High Schools

Pathway to Careers

- Optical Breadboard/Plate & 45.7mm (18”) Stainless Steel Ruler
- 2 - large & 2 - small storage boxes
- Photometer Detector with Thumb Screw & Cord placement
- Lens Cleaning Wipes & Tissues
Developing Photonics Education in Iowa’s Rural High Schools

Pathway to Careers

Location of components in Small Storage Box #2

- Mounted 50 μm Precision Pinhole
- Polarizer, Glass, green, 25mm diameter
- Microscope Slide
- 2 – Lens Mount, Fixed
- Razor blade
- 2 – Laser Diodes with cords neatly wrapped

Indian Hills Community College

Life. Changing.
Pathway to Careers

Developing Photonics Education in Iowa’s Rural High Schools

Location of components in Small Storage Box #1

2 – Prism, Right Angle
Prism, Equilateral
Bi-Concave Lens Ø25.4mm f = -25mm
Plano Convex Lens Ø25.4mm f=200mm
Bi-Convex Lens Ø25.4mm f = 25.4mm
Developing Photonics Education in Iowa’s Rural High Schools

Location of components in Large Storage Box #2

- 2 – Right-Angle Clamp/Post Holder
- 7 – Posts, 2 piece
- 6 – Post Holders
- 2 – Dual Filter Holders
- Mounted Single Slit, 100μm
- Block, Acrylic
- Wave Plate, Multiple Order, ¼ Wave
- 2 – Base, Mounting

Pathway to Careers
Developing Photonics Education in Iowa’s Rural High Schools

Location of components in Large Storage Box #1

- 2 – Kinematic Mirror Mount with mirror
- 2 – Polarizers, slide mount
- LED Inspection Flashlight
- 6+ each Socket Head & Set Screws
- 7-piece, Hex Key (Allen wrench) Set
- V-Clamp, Cylindrical Laser Mount, with Clamping Arm (packed separately)
- 5 – index cards & protractor
- Filter Set, Color (RGB, CYM)
- 1000 lines/mm Diffraction Grating
- Rotation Mount & Rotation Stage
- Rotation Mount & Rotation Stage
Developing Photonics Education in Iowa’s Rural High Schools

Pathway to Careers

- Placement with storage boxes removed
- All Equipment Documentation
- 2 - A/C Cords for Power Supplies
- Photometer, Digital, 2µW, 2mW, 20mW settings
- Photometer Detector with Thumb Screw & Cord
- Translation Stage, Single Axis
- Spectroscope
- Base with Rod for Optical Detector
- 2 - Laser Diode Power Supplies (bottom to bottom) with cords neatly wrapped

INDIANHILLS COMMUNITY COLLEGE
Lab Instruction booklet contains thirty labs that can be completed using the Photonics Kit.
Developing Photonics Education in Iowa’s Rural High Schools

Pathway to Careers

INDIAN HILLS COMMUNITY COLLEGE

Life. Changing.
Pathway to Careers

Developing Photonics Education in Iowa’s Rural High Schools

INDIAN HILLS
COMMUNITY COLLEGE

Life. Changing.
2. Provide photonics-related professional development and follow-up assistance to science and technology teachers to have photonics concepts infused into their courses. Photonics Symposium.

- Conducted first one Aug 5 & 6, 2019
- Tentatively #2 is Aug 3 & 4, 2020 (COVID19)
- Each school has a STEM “facilitator” to oversee the class time.
 - Ensure security for the lab kits and answer ancillary questions.
- Laser/Optics Technology Symposium: 2 – days each summer.
 - Generated and presented for STEM teachers.
 - CEU’s may be obtained.
 - 4 – hours: Presentation on the basics of photonics
 - 12 – hours: Hands-on training with the RIPE (MPEC) Photonics Kit
3. Host a photonics summer institute to provide high school students & teachers with more in-depth exposure to the field. Photonics Institute.
 - First one was scheduled for July 2020 but was cancelled (COVID19)
 - Photonics Fundamentals Institute: 4 – days each summer.
 - Meet & greet; tour of IHCC facility with emphasis on Laser Optics lab; expert panels; local company tours utilizing lasers; hands-on lab activities for teacher/student teams, etc.
 - CEU’s may be obtained
Developing Photonics Education in Iowa’s Rural High Schools

• Compared to other teaching methods
 • Online/hybrid dual credit
 • Lecture content is online
 • Lab content is hands-on with donated labs
 • Online
 • No hands-on labs.
 • Face-to-face
 • Not available to multiple high schools and therefore students/teachers
Pathway to Careers

Developing Photonics Education in Iowa’s Rural High Schools

• Strengths, Weaknesses
 • Strengths:
 • Available to large number of students in multiple high schools
 • Outreach to include more high schools and their administration
 • Weaknesses:
 • Most high school students have not taken an online course
 • Most STEM Facilitators do not know the content
 • Communication factor is highly reduced even though we are using Blackboard Collaborate, etc.
Pathway to Careers

Developing Photonics Education in Iowa’s Rural High Schools

• Opportunities, Threats
 • Opportunities
 • Students and teachers (facilitators) are becoming informed and involved
 • Educate students/teachers/counsellors about benefits of lasers & optics
 • Increase the number of students in photonics careers.
 • Threats
 • The fear of the unknown to be voiced to other students
 • Lack of commitment for sustainability
Developing Photonics Education in Iowa’s Rural High Schools

• How best applied/implemented
 • Expert knowledge person to develop content and labs
 • Available teacher/trainer
 • The four high schools (6 sessions) have class times at six intervals from 8:00 a.m. to 3:22 p.m.
• Necessary lab components in a single kit to support all labs
• Enough kits for all involved students
 • One kit per two students
 • One kit per three is acceptable with designated roles that rotate
 • Lab Scribe
 • Lab Technician
 • Lab Team Leader/Safety Officer
Developing Photonics Education in Iowa’s Rural High Schools

• 2019 – 2020, Year 2 results:
 • Contacted eight high schools
 • Four participated
 • Seventeen starting students
 • 19 original with 2 withdrawing within a week
 • Nine completers: 53% completion rate.
 • Hands-on labs were eliminated as equipment was stored within the high school building.
 • Creative pedagogy was used to fulfill course objectives.
 • Five of those are interested in photonics: 56% interested
 • One of the five has registered for FA2020: 20%
• **2020 – 2021, Year three plans:**
 • Contacted all IHCC area high schools: 21
 • Narrowed that to fifteen, response was normal
 • Then COVID19 (C19) happened
 • Unable to have face-to-face administrative meetings and/or student presentations
 • Continued communicating; minimal response
 • Conducted two area wide ZOOM outreach meetings
 • Three high schools responded
 • Two students have registered; not from one of the originals
 • IHCC’s Connect 2 College office anticipates that when the schools resume, more will register
Pathway to Careers

Developing Photonics Education in Iowa’s Rural High Schools

• 2020 – 2021, Year three plans:
 • Continuing to communicate to superintendents, principals, counsellors and teachers
 • Attend & participate in a greater number of high school career days
 • Offer & conduct Photonics Fundamentals I & II
 • LEO103 & 104 which correspond to IHCC’s LEO102
 • Plan for 2 symposiums and 2 institutes summer 2021
 • Submit a supplemental grant proposal for one year extension
 • C19 eliminated the effectiveness of meeting the objectives
Developing Photonics Education in Iowa’s Rural High Schools

Please email me your questions and/or comments or feel free to give me a call.

Thank you for your attention.

Frank Reed
frank.reed@indianhills.edu
Mobile: 641.777.3538 (best)
Office: 641.683.5111, ext 1743
Toll Free: 800.726.2585 ext 1743